Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering
نویسندگان
چکیده
Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n-butanol, n-butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways.
منابع مشابه
An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.
Ruminal amino acid degradation is a nutritionally wasteful process that produces excess ruminal ammonia. Monensin inhibited the growth of monensin-sensitive, obligate amino acid-fermenting bacteria and decreased the ruminal ammonia concentrations of cattle. 16S rRNA probes indicated that monensin inhibited the growth of Peptostreptococcus anaerobius and Clostridium sticklandii in the rumen. Clo...
متن کاملCloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5, 6-aminomutase from Clostridium sticklandii.
D-Lysine 5,6-aminomutase from Clostridium sticklandii catalyzes the 1,2-shift of the epsilon-amino group of D-lysine and reverse migration of C5(H). The two genes encoding 5,6-aminomutase have been cloned, sequenced, and expressed in Escherchia coli. They are adjacent on the Clostridial chromosome and encode polypeptides of 57. 3 and 29.2 kilodaltons. The predicted amino acid sequence includes ...
متن کاملSynthesis of adenine-B12 coenzyme by Clostridium sticklandii: relationship to one-carbon metabolism.
A member of the vitamin B12 group has been identified as the red chromophore of reddish brown enzyme fractions obtained from Clostridium sticklandii. An orange compound which appears to be identical with the coenzyme form of pseudovitamin B12 (or adenine-B12 coenzyme) discovered by Barker et al. (Proe. Natl. Acad. Sci. U. S., 44, 1093, 1958) is obtained if preparations are protected from visibl...
متن کاملBacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production.
When ruminal bacteria from a cow fed hay were serially diluted into an anaerobic medium that had only peptides and amino acids as energy sources, little growth or ammonia production was detected at dilutions greater than 10(-6). The 10(-8) and 10(-9) dilutions contained bacteria that fermented carbohydrates, and some of these bacteria inhibited Clostridium sticklandii SR, an obligate amino acid...
متن کاملPurification and properties of proline reductase from Clostridium sticklandii.
Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017